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Agenda

I Numerical Integration: MCMC methods

I Estimating Markov Chains

I Estimating latent variables
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Numerical Integration: Part II

I Quadrature for one to a few dimensions feasible for
well-behaved distributions

I For many-dimensional integrals, we typically use Markov chain
Monte Carlo

I There are many different methods

I I discuss a simple one (Gibbs Sampling) and a more complex
one (Metropolis-Hastings)

I This is a prominent problem in Bayesian analysis
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The Problem

I Say your data is summarized by a two-dimensional problem:
height and weight f (x1, x2)

I You want a population, for i ∈ (1, ..., n), (x i1, x
i
2)

I You have access to the conditional marginal distributions.
That is, while f (x1, x2) is ugly, f (x1|x2) and f (x2|x1) are easy
to sample from.
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Gibbs Sampling

1. Start with (x01 , x
0
2 )

2. Sample x11 ∼ f (x1|x02 )

3. Sample x12 ∼ f (x2|x11 )

4. We have a LLN and CLT that states that:

1

N

N∑
i=1

g(x i )→
∫

g(x)f (x)dx
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Gibbs Sampling: Example

I Assume a distribution:

x ∼ N (0,Σ) Σ =

[
1 ρ
ρ 1

]
I Then we can get the conditional marginal distributions:

x1|x2 ∼ N
(
ρx2, (1− ρ)2

)
x2|x1 ∼ N

(
ρx1, (1− ρ)2

)
I Iteratively sample from these.

I See Gibbs.m
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Metropolis Hastings
What if we can only evaluate likelihood at a given point?

1. We start with some (multi-dimensional) value x i and a
proposal distribution g(x |x i )

2. Grab a new sample from our proposal distribution:

x ′ ∼ g(x |x i )

3. Calculate acceptance probability:

pr(x i , x ′) = min

{
1,

f (x ′)

f (x i )

g(x i |x ′)
g(x ′, x i )

}
4. Accept the new value with probability pr(x i , x ′), otherwise,

stay there.

5. This again converges in distribution to the true distribution.
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A convenient proposal density

I If our proposal density is symmetric

g(x i |x ′) = g(x ′, x i )

I This is called random-walk Metropolis-Hastings

I Our acceptance probability is easy:

pr(x i , x ′) = min

{
1,

f (x ′)

f (x i )

}
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Metropolis-Hastings: Example

I Let’s say our distribution is one-dimensional:

x ∼ 0.5U(0, 1) + 0.25U(−1, 2) + 0.25U(0.5, 0.75)

I Choose sampling distribution centered around current point:

g(x ′|x) ∼ N (x , 0.1)
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Sampling PDF

I Let’s say our distribution is one-dimensional:

x ∼ 0.5U(0, 1) + 0.25U(−1, 2) + 0.25U(0.5, 0.75)

I Choose sampling distribution centered around current point:

g(x ′|x) ∼ N (x , 0.1)
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Metropolist-Hastings Random Walk: Example
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Sampling PDF

I Let’s say our distribution is one-dimensional:

x ∼ 0.5U(0, 1) + 0.25U(−1, 2) + 0.25U(0.5, 0.75)

I Choose sampling distribution centered around current point:

g(x ′|x) ∼ N (x , 0.1)
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Why learn MH & Numerical Integration?

I Many-dimensional problems

I Bayesian estimation

I Write down model

I Write down distribution of parameters f (θ)

I Simulate many models to get model distribution of data f (x |θ)

I Update your beliefs: f (θ|x) ∝ f (θ)f (x |θ)

I Typically need to draw from posterior distribution without an
analytical calculation

I Use M-H
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Aside: Multiple Hypothesis Testing and
Maximum F-Statistics

I Data is tortured. When you see...

I ..an experiment with multiple test groups or with without very
strong theoretical justification, be skeptical!

I ...a regression that could have been run differently, or with
many potential controls, weighting options, and
unit-of-observation choices, be skeptical!

I Not all bad: t-statistics might just be heuristics...when I see
0.01 in a regression where I could imagine 10 other setups, I
know the real p-value is around 0.1.

I But we might want to take statistics seriously, or data-mine
honestly

I We can simulate the distribution of the maximum F-statistic,
or the maximum t-statistic.

I See MonteCarlo.do and similar exercises (Note: Stata!)
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